JAMES' QUASI-REFLEXIVE SPACE IS NOT ISOMORPHIC TO ANY SUBSPACE OF ITS DUAL

BY

ALFRED ANDREW

ABSTRACT

We prove that each non-reflexive subspace of J^* contains a subspace isomorphic to J^* and complemented in J^* . Consequences are that J is not isomorphic to any subspace of J^* , and that every reflexive subspace of J is contained in a complemented reflexive subspace of J.

1. In section 2 of this paper we present the solution to a conjecture of James [7]. We prove that there is no linear isomorphism of James' quasi-reflexive Banach space into its dual. This is accomplished by proving that each non-reflexive subspace of J^* contains a subspace isomorphic to J^* and complemented in J^* , and then using James' result [7] that J^* is not isomorphic to any subspace of J. This result implies the formally stronger statement, conjectured in Casazza [2], that J and J^* are incomparable to the extent that if $X \subset J$ and $Y \subset J^*$ are non-reflexive, then X and Y are not isomorphic. Since J and J^* are quasi-reflexive of order one, their non-reflexive subspaces are also quasi-reflexive of order one [4]. In [1] we proved that every non-reflexive subspace of J contains the isomorphic image of J.

In section 3 we apply the main result of section 2 to the study of reflexive subspaces of J and J^* . We show that any reflexive subspace of J (or J^*) is contained in a complemented reflexive subspace of J (J^*).

We wish to thank Professor Casazza for bringing these questions to our attention, Professor Pelczynski for helpful discussions, and the referee for simplifying some of our arguments.

James' space J was introduced in [5], [6], and may be defined as the Banach space of all sequences of real numbers (a_i) such that

$$\lim_{i\to\infty}a_i=0,\qquad\text{and}\qquad$$

Received May 7, 1980 and in revised form October 29, 1980

Vol. 34, 1981

(1)
$$||(a_i)|| = \sup_{p_1 < \cdots < p_n} \frac{1}{\sqrt{2}} \left(\sum_{i=1}^{n-1} |a_{p_i} - a_{p_{i+1}}|^2 + |a_{p_n} - a_{p_i}|^2 \right)^{1/2} < \infty.$$

With this norm, J is isometric to its second conjugate space, which is the Banach space of all sequences of reals for which the squared-variation norm (1) is finite. Since finiteness of the norm implies $\lim a_i$ exists, any $x \in J^{**}$ may be written as $x = x_0 + a 1$, where $x_0 \in J$, $a \in \mathbb{R}$, and 1 denotes the sequence $(1, 1, 1, \dots) \in J^{**}$.

Our notation is standard in Banach space theory, as may be found in [8]. If (z_n) is a sequence in a Banach space Z, we denote the closed linear span of (z_n) by $[(z_n)]$. A sequence (z_n) is termed *semi-normalized* if there is a constant M > 0 such that $M^{-1} \leq ||z_n|| \leq M$ for all n. Schauder bases (y_n) and (z_n) are said to be *equivalent* if there is a constant M such that for all scalar sequences (a_n) ,

$$M^{-1} \| \Sigma a_n y_n \| \leq \| \Sigma a_n z_n \| \leq M \| \Sigma a_n y_n \|.$$

We reserve the notation (e_n) for the unit vector basis of J, and (e_n^*) for the sequence of biorthogonal functionals. It is known that (e_n^*) is a basis for J^* and that the sequence (x_n) defined by $x_n = \sum_{i=1}^n e_i$ is a boundedly complete basis for J, with $x_n^* = e_n^* - e_{n+1}^*$ [5], [8].

Although most computations will be done in J, we shall use the following proposition concerning the norm in J^* .

PROPOSITION 1. Let $x^* = \sum_{i=1}^{\infty} a_i e^*_i \in J^*$. Then (a) If $a_i \ge 0$ for all *i*, then $||x^*|| = \sum |a_i|$, (b) $||x^*|| \ge 1/\sqrt{2} [\sum_{i=1}^{\infty} |a_i|^2]^{1/2}$.

PROOF. Statement (a) appears in [8]. We certainly have $||x^*|| \leq \Sigma |a_i|$, and since $||1||_{J^{**}} = 1$, $\Sigma |a_i| = \langle 1, x^* \rangle \leq ||x^*||$.

To prove (b), notice that (1) and the inequality $(x + y)^2 \leq 2(x^2 + y^2)$ imply that for all n,

$$\left\|\sum_{i=1}^{n} a_{i}e_{i}\right\| \leq \sqrt{2} \left[\sum_{i=1}^{n} a_{i}^{2}\right]^{1/2}.$$

Thus for all n

$$\sqrt{2}\left[\sum_{i=1}^{n} a_{i}^{2}\right]^{1/2} \|x^{*}\| \ge \left|\left\langle x^{*}, \sum_{i=1}^{n} a_{i}e_{i}\right\rangle\right| = \sum_{i=1}^{n} a_{i}^{2},$$

so that

$$\|x^*\| \ge \frac{1}{\sqrt{2}} \left[\sum_{i=1}^n a_i^2 \right]^{1/2}.$$

2. In this section we prove

THEOREM 2. If X is a non-reflexive subspace of J^* , then X contains a subspace isomorphic to J^* and complemented in J^* .

The main step in the proof of Theorem 2 is to show that if (z_n) is a sequence in J^* converging to zero in the weak* topology but not in the weak topology, then (z_n) has a subsequence equivalent to the unit vector basis of J^* . To this end we present several propositions concerning block basic sequences of (e_n^*) .

PROPOSITION 3. Let (z_n) be a block basic sequence in J^* with $z_n = \sum_{i=p_n+1}^{p_{n+1}} a_i e_i^*$, and suppose $\sum_{p_n+1}^{p_{n+1}} a_i = K > 0$. Then for any scalar sequence (b_n) ,

(a)
$$\|\Sigma b_n z_n\| \ge K \|\Sigma b_n e_n^*\|$$

(b) If $a_i \ge 0$ for all *i*, then

$$\|\Sigma b_n z_n\| \leq \sqrt{2} K \|\Sigma b_n e_n^*\|$$

PROOF. Let $x = \sum c_i e_i \in J$, and observe that $||x|| = ||\sum_k c_k \sum_{p_k+1}^{p_{k+1}} e_i||$. Then

$$\left\langle \sum_{k} b_{k} z_{k}, \sum_{k} c_{k} \sum_{p_{k}+1}^{p_{k}+1} e_{i} \right\rangle = \sum_{k} b_{k} c_{k} \sum_{p_{k}+1}^{p_{k}+1} a_{i}$$
$$= K \sum_{k} b_{k} c_{k}$$
$$= K \langle \Sigma b_{k} e_{k}^{*}, \Sigma c_{k} e_{k} \rangle,$$

so that (a) follows by taking the supremum over $x \in J$, ||x|| = 1.

Now, assuming $a_i \ge 0$ for all *i*, define $\bar{c}_n = (1/K) \sum_{p_n+1}^{p_{n+1}} a_i c_i$ for each *n*. It follows from (1) that

$$\left\|\sum \bar{c}_n\left(\sum_{p_n+1}^{p_{n+1}}e_i\right)\right\| \leq \sqrt{2} \left\|\sum \left(\sum_{p_n+1}^{p_{n+1}}c_ie_i\right)\right\|,$$

and hence

$$|\langle \Sigma b_n z_n, \Sigma c_i e_i \rangle| = \left| \sum_k b_k \sum_{p_k+1}^{p_{k+1}} a_n c_n \right|$$
$$= K |\Sigma b_n \bar{c}_n|$$
$$= K |\langle \Sigma b_n e_n^*, \Sigma \bar{c}_k e_k \rangle|$$
$$\leq K ||\Sigma b_n e_n^*|| ||\Sigma \bar{c}_k e_k||$$
$$\leq \sqrt{2} K ||\Sigma b_n e_n^*|| ||\Sigma c_i e_i||.$$

Now (b) follows by taking the supremum over $x \in J$, ||x|| = 1.

Recall that a basis is said to be *spreading* if it is equivalent to each of its subsequences. An immediate corollary to Proposition 3 is

COROLLARY 4. The unit vector basis (e_n^*) for J^* is spreading.

We now consider block basic sequences equivalent to the unit vectors in l_2 .

PROPOSITION 5. Let $y_i = \sum_{p_i+1}^{p_i+1} a_i e_i^*$ be a semi-normalized block basic sequence in J^* , and suppose $\sum_{i=p_i+1}^{p_{i+1}} a_i = 0$ for all j. Then (y_i) is equivalent to the unit vector basis of l_2 .

PROOF. Since (e_n^*) is spreading, we may assume that $a_{p_n} = 0$ for all *n*. Let $X = [(\sum_{p_j+1}^{p_{j+1}} e_i)] \subset J$. Then $y_j \in X^{\perp}$ for all *j*. Now, X is complemented in J [3] by the projection P, where

$$P(\Sigma c_i e_i) = \sum_n c_{p_{n+1}} \left(\sum_{p_{n+1}}^{p_{n+1}} e_i \right),$$

and has complement

$$(I-P)J = [\{e_j : j \neq p_n \ \forall n\}] \approx (\Sigma \bigoplus J_{k(n)})_{l_2},$$

where $J_{k(n)}$ is the span of the first k(n) unit vectors in J, and is here regarded as $J_{k(n)} = [(e_{p_n+1}, \dots, e_{p_{n+1}-1})]$. Letting Q_n denote the natural projection of J onto $J_{k(n)}$, we see that $Q_n^*(I - P^*)$ is a projection of J^* (and of $X^{\perp} \approx (\Sigma \bigoplus J_{k(n)}^*)_{l_2}$) onto $J_{k(n)}^*$. Since $a_{p_n} = 0$ for all n, $Q_n^*(I - P^*)y_n = y_n$, so that $y_n \in J_{k(n)}^*$ for all n. Thus, for any scalar sequence (b_n) , $\|\Sigma b_n y_n\| = [\Sigma |b_n|^2 \|y_n\|^2]^{1/2}$, where the norms are computed in $(\Sigma \bigoplus J_{k(n)})_{l_2}^*$. Computations using (1) and theorem 1 of [3] show that for any $x^* \in (I - P^*)J^*$,

$$\frac{1}{2\sqrt{2}} \| \mathbf{x}^* \|_{(\Sigma \oplus J_{k(n)})^{\frac{1}{2}}} \leq \| \mathbf{x}^* \|_{J^*} \leq 2 \| \mathbf{x}^* \|_{(\Sigma \oplus J_{k(n)})^{\frac{1}{2}}}.$$

Thus, since (y_n) is assumed to be semi-normalized, (y_n) is equivalent to the unit vector basis for l_2 .

PROPOSITION 6. Let $w_i = \sum_{p_i+1}^{p_i+1} a_i e_i^*$ be a semi-normalized block basic sequence in J^* , and suppose $\sum_{p_n+1}^{p_{n+1}} a_i = K > 0$ for all n. Then (w_i) is equivalent to (e_i^*) , and $\{(w_i)\}$ is complemented in J^* .

PROOF. It follows from Proposition 3 that $\|\Sigma b_n e_n^*\| \leq (1/K) \|\Sigma b_n w_n\|$ for all scalar sequences (b_n) .

A. ANDREW

To establish the other inequality, we must show that the convergence of a series $\sum b_n e_n^*$ implies the convergence of the series $\sum b_n w_n$. We write

$$w_n = \sum_{p_n+1}^{p_{n+1}} a_i e^* = \frac{K}{p_{n+1} - p_n} \sum_{p_n+1}^{p_{n+1}} e^* + \sum_{p_n+1}^{p_{n+1}} \left(a_i - \frac{K}{p_{n+1} - p_n} \right) e^*$$

= $z_n + y_n$.

By Proposition 1 we see that $||z_n|| = 1$ for all *n*, and that there exists a constant *M* such that $||y_n|| \le M$ for all *n*. If now, $\sum b_n e_n^*$ converges, it follows from Proposition 3 that $\sum b_n z_n$ converges, and from Propositions 1 and 5 that $\sum b_n y_n$ converges. Hence $\sum b_n w_n$ is convergent. Thus (w_n) is equivalent to (e_n^*) .

Using the equivalence of (w_n) and (e_n^*) , it follows that the averaging projection $Q: J \rightarrow J$ defined by

$$Q(\sum c_n e_n) = \frac{1}{K} \sum_n \left(\sum_{i=p_n+1}^{p_{n+1}} a_i c_i \right) \left(\sum_{i=p_n+1}^{p_{n+1}} e_i \right)$$

is bounded. A simple calculation shows that $P = Q^*$ is given by

$$Q^*(\Sigma d_n e_n^*) = \sum_n \left(\frac{1}{K} \sum_{p_n+1}^{p_{n+1}} d_j\right) w_n,$$

and hence $[(w_n)]$ is complemented by P.

We are now prepared for the

PROOF OF THEOREM 2. Let $Y \subset J^*$ be non-reflexive. Then there exists a sequence of norm one vectors $(w'_n) \subset Y$ having no limit in the weak topology on J^* . Since the ball of J^* is w^* compact, we may assume, by passing to a subsequence, that (w'_n) has a weak^{*} limit $w \in J^*$.

We consider the first case when $w \in Y$, and in this case, we may assume w = 0. Since $w'_n \not\rightarrow 0$ weakly, there exists $x \in J^{**}$ such that $\langle x, w'_n \rangle \not\rightarrow 0$. Since $x = x_0 + \lambda 1$ for some $x_0 \in J$ and some scalar λ , it follows from the weak* convergence of w'_n to zero that $\lambda \neq 0$ and that $\langle 1, w'_n \rangle \not\rightarrow 0$. Using the weak* convergence of (w'_n) to zero, the fact that $\langle 1, w'_n \rangle \not\rightarrow 0$, standard perturbation arguments, and by passing to a subsequence, there exists a block basic sequence (w_n) , $w_n = \sum_{p_n+1}^{p_{n+1}} a_i e^*$ such that $\langle 1, w_n \rangle = \sum_{p_n+1}^{p_{n+1}} a_i = K > 0$, and such that $\sum ||w_n - w'_n||$ is small enough so that $[(w'_n)]$ is equivalent to $[(w_n)]$ and complemented in J^* . In this case $[(w'_n)]$ is the desired subspace, since (w_n) is equivalent to (e^*_n) by Proposition 8.

We now consider the case when Y contains no sequence which is not weakly convergent yet does converge to zero in the weak* topology on J^* . Then Y contains a non-weakly-convergent sequence of norm one vectors (w_n) with weak* limit $w \notin Y$. By the preceding arguments, there exists a sequence $(z_n) \in Y \bigoplus [w]$ such that $z_n \xrightarrow{w} 0$, $z_n \neq 0$ weakly, (z_n) is equivalent to (e_n^*) , and $[(z_n)]$ is complemented in J^* . We may write $z_n = y_n + a_n w$ with $y_n \in Y$ and $a_n \in \mathbb{R}$. Since Y contains no sequence converging weak* to zero but failing to converge weakly to zero, we may assume (a_n) has a nonzero cluster point a. By perturbing and passing to a subsequence, we may assume $z_n = y_n + ay$. Now $z_n - z_{n+1} = y_n - y_{n+1} \in Y$, and $(z_n - z_{n+1})$ is equivalent to $(e_n^* - e_{n+1}^*)$. But the sequence $(e_n^* - e_{n+1}^*)$ is biorthogonal to the boundedly complete basis (x_n) for J, so $[(e_n^* - e_{n+1}^*)]^* \approx J$. Since the predual of J is isomorphic to J^* [4], [7], it follows that $[(y_n - y_{n+1})] \approx J^*$, and that Y contains an isomorph of J*. Moreover $[(y_n - y_{n+1})]$ is of codimension one in $[(z_n)]$ and hence is complemented in $[(z_n)]$. Since $[(z_n)]$ is complemented in J*, it follows that $[(y_n - y_{n+1})]$ is complemented in J*.

REMARK. There do exist non-reflexive subspaces of J^* for which the weak^{*} convergence of a sequence to zero implies weak convergence to zero. An example is $[(e_n^* - e_{n+1}^*)]$.

THEOREM 7. There is no linear isomorphism from J into J^* .

PROOF. Suppose to the contrary that $T: J \to J^*$ is an isomorphism onto its range. Then by Theorem 2, TJ contains a subspace Y isomorphic to J^* . But then, denoting the isomorphism from J^* to Y by S, $T|_Y^{-1}S$ is an isomorphism from J^* into J, contradicting a result of James [7].

These results also imply the following formally stronger statement of noncomparability of J and J^* .

COROLLARY 8. If $X \subset J$ and $Y \subset J^*$ are non-reflexive, then X and Y are not isomorphic.

PROOF. If there exists a non-reflexive space $Y \subset J^*$ isomorphic to a subspace of J, then by the above arguments, J^* embeds in J, a contradiction.

3. In this section we use the results of section 2 and [1] to obtain information concerning reflexive subspaces of J and J^* .

THEOREM 9. If $X \subset J$ ($X \subset J^*$) is reflexive, then there exists a reflexive space $R \subset J$ (J^*) such that R is complemented in J (J^*) and $X \subset R$.

PROOF. Let Z denote the predual of J. Since X is reflexive, J/X is nonreflexive, and hence $(J/X)^* = X^{\perp}$ is non-reflexive. Now $X_{\perp} \subset Z$ is of codimension at most one in X^{\perp} and is hence nonreflexive. Since Z is isomorphic to J^* , there exists, by Theorem 2, a subspace $Y \subset X_{\perp}$ with Y isomorphic to J^*

and complemented in Z by a projection P. Then X is contained in the complemented reflexive space ker P^* .

The proof of the case $X \subset J^*$ is the same, using theorem 2.1 of [1] in place of Theorem 2.

REMARK. Similar arguments show that if X is a reflexive subspace of J (or of J^*), then the quotient space J/X (or J^*/X) contains a complemented isomorph of J (J^*).

COROLLARY 10. If $X \subset J$ is reflexive, then X is isomorphic to a subspace of $(\Sigma \bigoplus J_n)_{l_2}$.

PROOF. By Theorem 9, X is contained in a complemented reflexive subspace R. By a result of Casazza [2], complemented reflexive subspaces of J embed isomorphically in $(\Sigma \bigoplus J_n)_{l_2}$.

References

1. A. D. Andrew, Spreading basic sequences and subspaces of J, Math. Scand., to appear.

2. P. G. Casazza, James' quasi-reflexive space is primary, Israel J. Math. 26 (1977), 294-305.

3. P. G. Casazza, B. L. Lin and R. H. Lohman, On James' quasi-reflexive Banach space, Proc. Amer. Math. Soc. 67 (1977), 265-271.

4. P. Civin and B. Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. 8 (1957), 906-911.

5. R. C. James, Bases and reflexivity of Banach spaces, Ann. Math. 52 (1951), 518-527.

6. R. C. James, A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. USA 37 (1951), 174–177.

7. R. C. James, Banach spaces quasi-reflexive of order one, Studia Math. 60 (1977), 157-177.

8. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer Verlag, New York, 1977.

SCHOOL OF MATHEMATICS GEORGIA INSTITUTE OF TECHNOLOGY ATLANTA, GA 30332 USA