ISRAEL JOURNAL OF MATHEMATICS, Vol. 38, No. 4, 1981

JAMES’ QUASI-REFLEXIVE SPACE
ISNOT ISOMORPHICTO ANY
SUBSPACE OF ITS DUAL

BY
ALFRED ANDREW

ABSTRACT

We prove that each non-reflexive subspace of J* contains a subspace isomor-
phic to J* and complemented in J*. Consequences are that J is not isomorphic
to any subspace of J*, and that every reflexive subspace of J is contained in a
complemented reflexive subspace of J.

1. In section 2 of this paper we present the solution to a conjecture of James
[7]. We prove that there is no linear isomorphism of James’ quasi-reflexive
Banach space into its dual. This is accomplished by proving that each non-
reflexive subspace of J* contains a subspace isomorphic to J* and com-
plemented in J*, and then using James’ result [7] that J* is not isomorphic to any
subspace of J. This result implies the formally stronger statement, conjectured in
Casazza [2], that J and J* are incomparable to the extent that if X CJ and
Y CJ* are non-reflexive, then X and Y are not isomorphic. Since J and J* are
quasi-reflexive of order one, their non-reflexive subspaces are also quasi-
reflexive of order one [4]. In [1] we proved that every non-reflexive subspace of J
contains the isomorphic image of J.

In section 3 we apply the main result of section 2 to the study of reflexive
subspaces of J and J*. We show that any reflexive subspace of J (or J*) is
contained in a complemented reflexive subspace of J (J*).

We wish to thank Professor Casazza for bringing these questions to our
attention, Professor Pelczynski for helpful discussions, and the referee for
simplifying some of our arguments.

James’ space J was introduced in [5], [6], and may be defined as the Banach
space of all sequences of real numbers (a;) such that

l,i_rg a; =0, and
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With this norm, J is isometric to its second conjugate space, which is the Banach
space of all sequences of reals for which the squared-variation norm (1) is finite.
Since finiteness of the norm implies lim a; exists, any x € J** may be written as
X = xo+ al, where x, € J, a €ER, and 1 denotes the sequence (1,1,1, - - - ) E J**,
Our notation is standard in Banach space theory, as may be found in [8]. If
(z.) is a sequence in a Banach space Z, we denote the closed linear span of (z.)
by [(z.)]. A sequence (z.) is termed semi-normalized if there is a constant M >0
such that M ™' =||z. || = M for all n. Schauder bases (y.) and (z.) are said to be
equivalent if there is a constant M such that for all scalar sequences (a.),

M7 Z anya | = |12 auza | = M| Z anya ||

We reserve the notation (e.) for the unit vector basis of J, and (e7%) for the
sequence of biorthogonal functionals. It is known that (e?}) is a basis for J* and
that the sequence (x.) defined by x,, = 2i-, ¢; is a boundedly complete basis for J,
with x} =e%—e%. [5], [8]

Although most computations will be done in J, we shall use the following
proposition concerning the norm in J*.

PROPOSITION 1. Let x*=2_,ae* € J*. Then
@) If a; =0 for all i, then ||x*||=Z]|a]|,
®) lx*z YV2[EL]a T

PROOF. Statement (a) appears in [8]. We certainly have ||x*||=Z|a:|, and
since |[1[;--=1, Z|a:| = {1, x*) =||x*|.

To prove (b), notice that (1) and the inequality (x + y)*=2(x*+ y?) imply that
for all n,
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2. In this section we prove

THEOREM 2. If X is a non-reflexive subspace of J*, then X contains a
subspace isomorphic to J* and complemented in J*.

The main step in the proof of Theorem 2 is to show that if (z..) is a sequence in
J* converging to zero in the weak™ topology but not in the weak topology, then
(z.) has a subsequence equivalent to the unit vector basis of J*. To this end we
present several propositions concerning block basic sequences of (e?).

PROPOSITION 3. Let (2,) be a block basic sequence in J* with z, = %! ., ae*,

n+1

and suppose 2.3 a; = K >0. Then for any scalar sequence (b,),
(@) |2 b.z.|| = K||Z beek.
(b) If a: =0 for all i, then
IZ bz, | = V2K||Z beet]\.

PrROOF. Let x =2 cie; € J, and observe that ||x || =||Zccx Z3i e |l. Then

Py Pr iy
<Z kak,Z Ck 2 > E bici 2 a;

P+l P +1
= KE bka
k

= K(Z bke t, 2 Ci€i ),

so that (a) follows by taking the supremum over x €J, ||x||= 1.
Now, assuming a; = 0 for all i, define ¢, = (1/K)Z,"%} aic; for each n. It follows
from (1) that

n+l

c.e.
p,l +1

53

Pn+1

and hence

Pic+1

> b D, aucn
k

P+l

I(E b.zn, p> Ciei), =

=K|[hé|
= K|(Zb.e*, = el
=K|Zbex|lIZ ceec

= \/_2_.K"2 bne:” ”2 cie; ”
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Now (b) follows by taking the supremum over x € J, [|x|= 1.
Recall that a basis is said to be spreading if it is equivalent to each of its
subsequences. An immediate corollary to Proposition 3 is

CoROLLARY 4. The unit vector basis (e%) for J* is spreading.
4 g

We now consider block basic sequences equivalent to the unit vectors in /..

PROPOSITION 5. Lety, = 2.\ ae* be a semi-normalized block basic sequence
i+l

in J*, and suppose =;"}.1a; =0 for all j. Then (y:) is equivalent to the unit vector
basis of L.

PrROOE. Since (e}) is spreading, we may assume that g, =0 for all n. Let
X =[(E7:4 e)) CJ. Then y; € X* for all j. Now, X is complemented in J [3] by
the projection P, where

PZce)= Z Conr (pE: ei>,

n

and has complement
I—-P) =[{e:j#p. YVn}]=(ZD ),

where Ji( is the span of the first k (n) unit vectors in J, and is here regarded as
Jeon = [(€p+15 * * 5 €5,.,-1))- Letting Q. denote the natural projection of J onto
Jomy, We see that Q*(I — P*)is a projection of J* (and of X* = (2 J¥(»)),) onto
J¥wm. Since a,, =0 for all n, Q% (I — P*)y. = yn, so that y, € J ¥ for all n. Thus,
for any scalar sequence (b.), |= by« || =[Z]b. ||y I[]"*, where the norms are
computed in (2 P Jiny)*,. Computations using (1) and theorem 1 of [3] show that
for any x*€ (I — P*)J*,

*[- =2l x * lewnopn,

1
2_—\/5 flx* ”(zeau(nmz =|x
Thus, since (y,) is assumed to be semi-normalized, (y.) is equivalent to the unit
vector basis for L.

P; . . .
PROPOSITION 6. Letw; =2, aie* be a semi-normalized block basic sequence
Port

inJ*, and suppose 2. ai = K >0 for all n. Then (w;) is equivalent to (e7), and
{(w))] is complemented in J*.

Proor. It follows from Proposition 3 that ||= b.e || = (1/K)||Z b.w., | for all
scalar sequences (b,).
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To establish the other inequality, we must show that the convergence of a
series 2 b.e i implies the convergence of the series X b,w,. We write

Ppy1 Py Ppig
w..=2a.-e‘.-‘——K——2 et+ (ai——K——)e’?

Patl Pn+17 Pn peer Patl Pr+17 Pn
=Zn + Yn.

By Proposition 1 we see that ||z, | = 1 for all n, and that there exists a constant M
such that ||y.[|[=M for all n. If now, Sh.e’ converges, it follows from
Proposition 3 that % b.z, converges, and from Propositions 1 and 5 that X b,y,
converges. Hence 2 b,w, is convergent. Thus (w,) is equivalent to (e¥).

Using the equivalence of (w.) and (e }), it follows that the averaging projection
Q:J —J defined by

Q(Ecne..)=—11(:z< pnzﬂ a.-c;)( p”ZH e.-)

n i=p,+1 i=p,+1

is bounded. A simple calculation shows that P = Q* is given by

1 Pust

and hence [(w.)] is complemented by P.
We are now prepared for the

ProoF OF THEOREM 2. Let Y CJ* be non-reflexive. Then there exists a
sequence of norm one vectors (w,)C Y having no limit in the weak topology
on J*. Since the ball of J* is w* compact, we may assume, by passing to a
subsequence, that (w;) has a weak* limit w € J*.

We consider the first case when w € Y, and in this case, we may assume w = 0.
Since w4 0 weakly, there exists x € J** such that {x, w.)4 0. Since x = x,+ A1
for some x, € J and some scalar A, it follows from the weak™ convergence of w,,
to zero that A # 0 and that (1, w,) 0. Using the weak* convergence of (w}) to
zero, the fact that (1, w,) 0, standard perturbation arguments, and by passing
to a subsequence, there exists a block basic sequence (w, ), w. = 2,7+ a.e ¥ such
that (1, w,) = 2,73, a, = K >0, and such that =||w, — w.] is small enough so that
[(w+)] is equivalent to [(w.)] and complemented in J*. In this case [(w})] is the
desired subspace, since (w.) is equivalent to (e%) by Proposition 8.

We now consider the case when Y contains no sequence which is not weakly
convergent yet does converge to zero in the weak™* topology on J*, Then Y
contains a non-weakly-convergent sequence of norm one vectors (w.) with
weak* limit wZ Y. By the preceding arguments, there exists a sequence
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(2.) € Y @[w] such that z, 50, z, /0 weakly, (z.) is equivalent to (e ¥), and
[(z+)] is complemented in J*. We may write z, =y, + a.w with y, €Y and
a. €ER. Since Y contains no sequence converging weak* to zero but failing to
converge weakly to zero, we may assume (a.) has a nonzero cluster point a. By
perturbing and passing to a subsequence, we may assume z, =y, + ay. Now
Zn—Zns1=Yn— Yan € Y, and (2. — z,+1) is equivalent to (e’ —en.;). But the
sequence (e — e 1.1) is biorthogonal to the boundedly complete basis (x. ) for J,
so [(e% — e%.1)]* = J. Since the predual of J is isomorphic to J* [4], [7], it follows
that [(y. — y.-1)]=J*, and that Y contains an isomorph of J*. Moreover
[(y« = ya+1)} is of codimension one in [(z.)] and hence is complemented in [(z,)].
Since [(z.)] is complemented in J*, it follows that [(y» — yn+1)] is complemented
in J*.

ReMARK. There do exist non-reflexive subspaces of J* for which the weak*
convergence of a sequence to zero implies weak convergence to zero. An
example is [(e% —e%.1)].

THEOREM 7. There is no linear isomorphism from J into J*.

ProoF. Suppose to the contrary that T:J— J* is an isomorphism onto its
range. Then by Theorem 2, TJ contains a subspace Y isomorphic to J*. But
then, denoting the isomorphism from J* to Y by S, T[S is an isomorphism
from J* into J, contradicting a result of James [7).

These results also imply the following formally stronger statement of non-
comparability of J and J*.

CorotLARY 8. If X CJand Y CJ* are non-reflexive, then X and Y are not
isomorphic.

Proor. If there exists a non-reflexive space Y CJ* isomorphic to a subspace
of J, then by the above arguments, J* embeds in J, a contradiction.

3. In this section we use the results of section 2 and [1] to obtain information
concerning reflexive subspaces of J and J*.

THEOREM 9. If X CJ (X CJ*) is reflexive, then there exists a reflexive space
R CJ (J*) such that R is complemented in J (J*) and X CR.

PROOF. Let Z denote the predual of J. Since X is reflexive, J/X is
nonreflexive, and hence (J/X)*= X" is non-reflexive. Now X,CZ is of
codimension at most one in X and is hence nonreflexive. Since Z is isomorphic
to J*, there exists, by Theorem 2, a subspace Y C X, with Y isomorphic to J*
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and complemented in Z by a projection P. Then X is contained in the
complemented reflexive space ker P*.

The proof of the case X CJ* is the same, using theorem 2.1 of [1] in place of
Theorem 2.

REMARK. Similar arguments show that if X is a reflexive subspace of J (or of
J*), then the quotient space J/X (or J*/X) contains a complemented isomorph
of J (J*).

CoroLLARY 10. If X CJ is reflexive, then X is isomorphic to a subspace of

EBI),.

ProoF. By Theorem 9, X is contained in a complemented reflexive subspace
R. By a result of Casazza [2], complemented reflexive subspaces of J embed
isomorphically in (£ J.)s,-
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