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JAMES' QUASI-REFLEXIVE SPACE 
IS NOT ISOMORPHIC TO ANY 

SUBSPACE OF ITS DUAL 

BY 

ALFRED ANDREW 

ABSTRACT 

' We prove that each non-reflexive subspace of J* contains a subspace isomor- 
phic to J* and complemented in J*. Consequences are that J is not isomorphic 
to any subspace of J*, and that every reflexive subspace of J is contained in a 
complemented reflexive subspace of J. 

1. In section 2 of this paper we present the solution to a conjecture of James 

[7]. We prove that there is no linear isomorphism of James' quasi-reflexive 

Banach space into its dual. This is accomplished by proving that each non- 

reflexive subspace of J* contains a subspace isomorphic to J* and com- 

plemented in J*, and then using James' result [7] that J* is not isomorphic to any 

subspace of J. This result implies the formally stronger statement, conjectured in 

Casazza [2], that J and J* are incomparable to the extent that if X CJ  and 

Y C J* are non-reflexive, then X and Y are not isomorphic. Since J and J* are 

quasi-reflexive of order one, their non-reflexive subspaces are also quasi- 

reflexive of order one [4]. In [1] we proved that every non-reflexive subspace of J 

contains the isomorphic image of J. 

In section 3 we apply the main result of section 2 to the study of reflexive 

subspaces of J and J*. We show that any reflexive subspace of J (or J*) is 

contained in a complemented reflexive subspace of J (jr*). 

We wish to thank Professor Casazza for bringing these questions to our 

attention, Professor Pelczynski for helpful discussions, and the referee for 

simplifying some of our arguments. 

James' space J was introduced in [5], [6], and may be defined as the Banach 

space of all sequences of real numbers (a~) such that 

lim a~ = 0, and 
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" '  ) 
(1) II(a,)[I sup x-~(~_ lat,, ap,+,12+lap, a. , l  ~ ''~ = - -  - -  ~ o o .  

p l < . . . < p .  V ' ~  _ 

With this norm, J is isometric to its second conjugate space, which is the Banach 

space of all sequences of reals for which the squared-variation norm (1) is finite. 

Since finiteness of the norm implies lima~ exists, any x E J** may be written as 

x = xo + a 1, where x0 E J, a E R, and 1 denotes the sequence (1, 1, 1,-. �9 ) E J**. 

Our notation is standard in Banach space theory, as may be found in [8]. If 

(z.) is a sequence in a Banach space Z, we denote the closed linear span of (z.) 

by [(z. )]. A sequence (z,) is termed semi-normalized if there is a constant M > 0 

such that M - ~ =  < Ilz. II =< M for all n. Schauder bases (y.) and (z.) are said to be 

equivalent if there is a constant M such that for all scalar sequences (a.), 

M-'II x n,y. II = lie a.z, [I -< MII x n,y. II. 

We reserve the notation (e.) for the unit vector basis of J, and (e*) for the 

sequence of biorthogonal functionals. It is known that (e*,) is a basis for J* and 

that the sequence (x.) defined by x, = E~'=~ el is a boundedly complete basis for J, 

with x* e * -  * . =  e.+~ [5], [8]. 

Although most computations will be done in Jr, we shall use the following 

proposition concerning the norm in J*. 

PROPOSITION 1. Let x* = ~,7=~a~e* E J  *. Then 

(a) I[ a~ >= 0 [or all i, then IIx*ll = El a, l, 

(b) IIx*ll--> I/V~[ET=, [a, [z]~/2. 

PROOF. Statement (a) appears in [8]. We certainly have Ilx*[[----< E la~ 1, and 

since IIlllJ.. = 1, Xla, I-- <l,x*>=<llx*ll. 
To prove (b), notice that (1) and the inequality (x + y)2 _----- 2(x 2 + y2) imply that 

for all n, 

Thus for all n 

so that 

n 

jl ae ' 

n 112 n 

= 

],,2 
tlx I1= v ~  a'~ " 
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2. In this section we prove 

TI-m0REM 2. I f  X is a non-reflexive subspace of J*, then X contains a 

subspace isomorphic to J* and complemented in J*. 

The main step in the proof of Theorem 2 is to show that if (z.) is a sequence in 

J* converging to zero in the weak* topology but not in the weak topology, then 

(z,) has a subsequence equivalent to the unit vector basis of J*. To this end we 

present several propositions concerning block basic sequences of (e*). 

P n + l  * PROPOSmON 3. Let (z , )  be a block basic sequence in J* with z. = E, ~p.+~ a,e i, 
Pnn+l and suppose Ep ~ ai = K >0.  Then for any scalar sequence (b.), 

(a) IIEb.z. II -> gllY~b.e*.ll. 

(b) I f  a, >- 0 for all i, then 

IlX boz. ll <-_ X/-2 gllX b.e *.ll. 

PROOF. Let x = E c,e, E J, and observe that IIx II = IIZk c~ Xpk+le, pk +' II. Then 

k pk+l k pk+l 

= K ~  bkck 
k 

= K(E  bke *, E c~ek ), 

so that (a) follows by taking the supremum over x ~ J, IIx II = 1. 
P § Now, assuming a~ -> 0 for all i, define (~. = ( 1 / K ) ~ p " + l  aici for each n. It follows 

from (1) that 
Pn+l Pn+l 

and hence 

~k Pk+l [ 
I(Eb.z, ,Ec,e,) l  = bk ~ a.c~ 

pk +l 

= KlXb,,e,,J 

= Kl(Xb,,e*,X~kek)l  

_-< K IIX b.e•ll [IZ e,e~ II 

<= V~ gll~ b.e *.ll II~ c,e, II- 
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Now (b) follows by taking the supremum over x ~ J, IIx 1[ = 1. 

Recall that a basis is said to be spreading if it is equivalent to each of its 

subsequences. An immediate corollary to Proposition 3 is 

COROLLARY 4. The unit vector basis (e*,) for J* is spreading. 

We now consider block basic sequences equivalent to the unit vectors in 12. 

PROPOSITION 5. Let yj - Io'+' * - gpj§ a~e ~ be a semi-normalized block basic sequence 

in J*, and suppose s a, = 0 for all j. Then (y~) is equivalent to the unit vector 

basis of 12. 

PRooF. Since (e*,) is spreading, we may assume that ap. = 0 for all n. Let 

X = [(E~i;-'~ 6)] CJ. Then y, E X ~ for all j. Now, X is complemented in J [3] by 

the projection P, where 

l~ t P(gc,ei)--  ~ 1 ei , 

and has complement 

( I - P ) J  = [{ej : l i P .  Vn}] = (E@A(.)), , ,  

where A~.) is the span of the first k(n)  unit vectors in J, and is here regarded as 

A(.) = [(e..+~," ", epo.,-1)]. Letting Q. denote the natural projection of J onto 

At.), we see that Q *(I - P*) is a projection of J* (and of X • = (Y q)J*~.))6) onto 
= J kt.) for all Thus, Jk(.). Since ap. = 0 f o r a l l  n, Q * ( I - P * ) y .  y., sothat  y. ~ * n. 

for any scalar sequence (b.), HE b.y. IJ = [glb-r l lY.  11=] '~=, where the norms are 
computed in (s q) A(.))*;~. Computations using (1) and theorem I of [3] show that 

for any x * E (I - P*)J*, 

Thus, since (y.) is assumed to be semi-normalized, (y,) is equivalent to the unit 

vector basis for lz. 

Y~ioJ+' aie* be a semi-normalized block basic sequence PROPOSITION 6. Let wj = p,§ 
Pn+a in J*, and suppose s +~ a~ = K > 0  for all n. Then (wj ) is equivalent to (e *), and 

[(wj)] is complemented in J*. 

PROOF. It follows from Proposition 3 that I1:  b,e*ll--< (1/K)II~ b.w. II for all 

scalar sequences (b.). 
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To establish the other inequality, we must show that the convergence of a 

series E b,,e*~ implies the convergence of the series Y~ b,,w.. We write 

K E *  E K , wn = aie * = - -  e i + a~ e 
p.+, p,+, - pn p.+l p.+, pn§ - p.  

= z~ + y.. 

By Proposition 1 we see that [Iz, 11 = 1 for all n, and that there exists a constant M 

such that [lY-11 _-<M for all n. If now, Y.b.e* converges, it follows from 

Proposition 3 that E bnz, converges, and from Propositions 1 and 5 that E b,y. 

converges. Hence E b.w.  is convergent. Thus (w.) is equivalent to (e*). 

Using the equivalence of (w.) and (e *), it follows that the averaging projection 

O : J --> J defined by 

O ( E c , e , ) =  ~ ~ ,  aic, e, 
i =pn+l  \ i = p n + l  

is bounded. A simple calculation shows that P = Q* is given by 

O * ( E d ~ e * ) =  ~ { l P ~ '  d i ) w , ,  
\ K ~,  

and hence [(wn)] is complemented by P. 

We are now prepared for the 

PROOF OF THEOREM 2. Let Y C J* be non-reflexive. Then there exists a 

sequence of norm one vectors ( w ' ) C  Y having no limit in the weak topology 

on J*. Since the ball of J* is w* compact, we may assume, by passing to a 

subsequence, that (w')  has a weak* limit w E J*. 

We consider the first case when w E Y, and in this case, we may assume w = 0. 

Since w "74 0 weakly, there exists x ~ J** such that <x, w'>74 0. Since x = Xo + A 1 

for some xo E J and some scalar A, it follows from the weak* convergence of w" 

to zero that Z # 0  and that <1, w ' ) - / , 0 .  Using the weak* convergence of (w')  to 

zero, the fact that <1, w'>-i4 0, standard perturbation arguments, and by passing 
Pn4-1 to a subsequence, there exists a block basic sequence (w,), wn = Ep~+, a,e ~ such 

that <1, w,> = ~ - '~  a, = K > 0, and such that Y~II w, - w'll is small enough so that 

[(w')] is equivalent to [(w,)] and complemented in J*. In this case [(w')]  is the 

desired subspace, since (w~) is equivalent to (e*~) by Proposition 8. 

We now consider the case when Y contains no sequence which is not weakly 

convergent yet does converge to zero in the weak* topology on J*. Then Y 

contains a non-weakly-convergent sequence of norm one vectors (w.) with 

weak* limit w ~  Y. By the preceding arguments, there exists a sequence 
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w* 
(z.) ~ Y O [w] such that z. > 0, z. 74 0 weakly, (z,) is equivalent to (e *), and 
[(z.)] is complemented in J*. We may write z. = y. + a.w with y. E Y and 

a, E R. Since Y contains no sequence converging weak* to zero but failing to 

converge weakly to zero, we may assume (a.)  has a nonzero cluster point a. By 

perturbing and passing to a subsequence, we may assume z, = y. + ay. Now 

z , - z , §  y . - y . §  Y, and ( z . - z . + , )  is equivalent to (e*,-e*,.,).  But the 

sequence (e * - e *.§ is biorthogonal to the boundedly complete basis (x.) for J, 

so [(e*, - e *~+1)]* = 3". Since the predual of J is isomorphic to J* [4], [7], it follows 

that [ ( y . -  y.+l)]--~J*, and that Y contains an isomorph of J*. Moreover 

[(y. - y.§ is of codimension one in [(z,)] and hence is complemented in [(z.)]. 

Since [(z.)] is complemented in J*, it follows that [(y. - y.§ is complemented 

in J*. 

REMARK. There do exist non-reflexive subspaces of J* for which the weak* 

convergence of a sequence to zero implies weak convergence to zero. An 

example is [(e *, - e*,§ 

THEOREM 7. There is no linear isomorphism from J into J*. 

PROOf. Suppose to the contrary that T:J--->J* is an isomorphism onto its 

range. Then by Theorem 2, TJ contains a subspace Y isomorphic to J*. But 

then, denoting the isomorphism from J* to Y by S, TI;,'S is an isomorphism 

from J* into J, contradicting a result of James [7]. 

These results also imply the following formally stronger statement of non- 

comparability of J and J*. 

COaOLt,aRY 8. I[ X CJ and Y CJ* are non-reflexive, then X and Y are not 

isomorphic. 

PROOf. If there exists a non-reflexive space Y C J* isomorphic to a subspace 

of J, then by the above arguments, J* embeds in J, a contradiction. 

3. In this section we use the results of section 2 and [1] to obtain information 

concerning reflexive subspaces of J and J*. 

Trmot~_M 9. If  X C J  (X C J*) is reflexive, then there exists a reflexive space 

R CJ (J*) such that R is complemented in J (J*) and X CR. 

PROOF. Let Z denote the predual of Z Since X is reflexive, J / X  is 

nonreflexive, and hence (J /X)*= X j- is non-reflexive. Now X •  is of 

codimension at most one in X I and is hence nonreflexive. Since Z is isomorphic 

to J*, there exists, by Theorem 2, a subspace Y CX• with Y isomorphic to J* 
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and complemented in Z by a projection P. Then X is contained in the 

complemented reflexive space kerP*.  

The proof of the case X C J* is the same, using theorem 2.1 of [1] in place of 

Theorem 2. 

REMARK. Similar arguments show that if X is a reflexive subspace of J (or of 
J*), then the quotient space J/X (or J*/X) contains a complemented isomorph 

of J (J*). 

COROLLARY 10. I f  X CJ  is reflexive, then X is isomorphic to a subspace of 

PROOF. By Theorem 9, X is contained in a complemented reflexive subspace 

R. By a result of Casazza [2], complemented reflexive subspaces of J embed 

isomorphically in (Z @ J,);2. 
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